

Deep Learning for Computer Vision

Dr. Konda Reddy Mopuri Mehta Family School of Data Science and Artificial Intelligence IIT Guwahati Aug-Dec 2022

Previously on DA621....

• Scoring function (e.g., linear classifier: $f(x) = W^T x + b$)

Previously on DA621....

- Scoring function (e.g., linear classifier: $f(x) = W^T x + b$)
- Loss function (e.g., hinge, softmax losses)

• How to find the model parameters that minimize the loss function?

$$w^* = \operatorname*{argmin}_w L(w)$$

• How to find the model parameters that minimize the loss function?

$$w^* = \operatorname*{argmin}_w L(w)$$

• General and vast, but we will discuss within our context

• Finding the parameters that minimize the training loss

$$W^*, \mathbf{b}^* = \operatorname*{argmin}_{W, \mathbf{b}} \mathcal{L}(f(\cdot; W, \mathbf{b}); \mathcal{D})$$

• Finding the parameters that minimize the training loss

$$W^*, \mathbf{b}^* = \operatorname*{argmin}_{W, \mathbf{b}} \mathcal{L}(f(\cdot; W, \mathbf{b}); \mathcal{D})$$

• How do we find these optimal parameters?

Finding the parameters that minimize the training loss

$$W^*, \mathbf{b}^* = \operatorname*{argmin}_{W, \mathbf{b}} \mathcal{L}(f(\cdot; W, \mathbf{b}); \mathcal{D})$$

- How do we find these optimal parameters?
 - Closed form solution (e.g. linear regression)

Finding the parameters that minimize the training loss

$$W^*, \mathbf{b}^* = \operatorname*{argmin}_{W, \mathbf{b}} \mathcal{L}(f(\cdot; W, \mathbf{b}); \mathcal{D})$$

- How do we find these optimal parameters?
 - Closed form solution (e.g. linear regression)
 - Ad-hoc recipes (e.g. Perceptron, K-NN classifier)

Finding the parameters that minimize the training loss

$$W^*, \mathbf{b}^* = \operatorname*{argmin}_{W, \mathbf{b}} \mathcal{L}(f(\cdot; W, \mathbf{b}); \mathcal{D})$$

- How do we find these optimal parameters?
 - Closed form solution (e.g. linear regression)
 - Ad-hoc recipes (e.g. Perceptron, K-NN classifier)
 - What if the loss function can't be minimized analytically?

Source: travelholicq.com

Source: travelholicq.com

Source: travelholicq.com

• Probe random directions

- Probe random directions
- Progress if you find a useful direction

- Probe random directions
- Progress if you find a useful direction
- Repeat

- Probe random directions
- Progress if you find a useful direction
- Repeat
- Very ineffective!

A better looking one: Follow the slope!

• Sense the slope around the feet

A better looking one: Follow the slope!

- Sense the slope around the feet
- Identify the steepest direction, make a brief progress

A better looking one: Follow the slope!

- Sense the slope around the feet
- Identify the steepest direction, make a brief progress
- Repeat until convergence!

Derivative and Gradient

• In 1D, derivative of a function gives the slope

$$\frac{\partial f}{\partial x} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{h}$$

Derivative and Gradient

• In 1D, derivative of a function gives the slope

$$\frac{\partial f}{\partial x} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{h}$$

• In higher dimensions, given a function

$$f: \mathcal{R}^D \to \mathcal{R}$$

gradient is the mapping

$$\nabla f : \mathcal{R}^D \to \mathcal{R}^D$$
$$x \to \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_D}\right)$$

Derivative and Gradient

• In 1D, derivative of a function gives the slope

$$\frac{\partial f}{\partial x} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{h}$$

• In higher dimensions, given a function

$$f: \mathcal{R}^D \to \mathcal{R}$$

gradient is the mapping

$$\nabla f : \mathcal{R}^D \to \mathcal{R}^D$$
$$x \to \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_D}\right)$$

• ∇f vector gives the direction and rate of fastest increase for f.

Dr. Konda Reddy Mopuri

dl4cv-2/Optimization

 $\bullet\,$ Goal is to minimize the error (or loss): determine the parameters w that minimize the loss $\mathcal{L}(w)$

- $\bullet\,$ Goal is to minimize the error (or loss): determine the parameters w that minimize the loss $\mathcal{L}(w)$
- $\, \bullet \,$ Gradient points uphill $\, \rightarrow \,$ negative of gradient points downhill

Gradient Descent

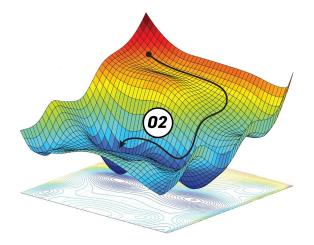


Figure credits: Ahmed Fawzy Gad

Dr. Konda Reddy Mopuri

dl4cv-2/Optimization

Gradient Descent

(1) Start with an arbitrary initial parameter vector w_0

- ${f 0}$ Start with an arbitrary initial parameter vector w_0
- ② Repeatedly modify it via updating in small steps

Gradient Descent

- (1) Start with an arbitrary initial parameter vector w_0
- ② Repeatedly modify it via updating in small steps
- 3 At each step, modify in the direction that produces steepest descent along the error surface

• Numerically, for each component of w using the derivative formula

$$\frac{\partial f}{\partial x} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$

• Numerically, for each component of w using the derivative formula

$$\frac{\partial f}{\partial x} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$

• Slow and approximate!

• Analytically, using calculus for computing the derivatives

$$L_{i} = \sum_{j \neq y_{i}} \max\{0, s_{j} - s_{y_{i}} + 1\}$$
$$L = \frac{1}{N} \sum_{i} L_{i} + \sum_{k} w_{k}^{2}$$
$$s = f(x, W)$$
$$\nabla L_{iw}?$$

• Analytically, using calculus for computing the derivatives

$$L_{i} = \sum_{j \neq y_{i}} \max\{0, s_{j} - s_{y_{i}} + 1\}$$
$$L = \frac{1}{N} \sum_{i} L_{i} + \sum_{k} w_{k}^{2}$$
$$s = f(x, W)$$
$$7L_{iw}?$$

• Analytic way is fast, exact, but error-prone!

7

Batch Gradient Descent

for i in range(nb_epochs):

$$\nabla L_w$$
 = evaluate_gradient(L, D , w)
w = w - $\eta * \nabla L_w$

Batch Gradient Descent

for i in range(nb_epochs):

$$\nabla L_w$$
 = evaluate_gradient(L, \mathcal{D} , w)
w = w - $\eta * \nabla L_w$

Guaranteed to converge to global minima in case of convex functions, and to a local minima in case of non-convex functions

Stochastic Gradient Descent (SGD)

0 Performs updates parameters for each training example $w=w-\eta \nabla_w \mathcal{L}(w,x^i,y^i)$

- ① Performs updates parameters for each training example $w = w \eta \nabla_w \mathcal{L}(w, x^i, y^i)$
- In case of large datasets, Batch GD computes redundant gradients for similar examples for each parameter update

- ① Performs updates parameters for each training example $w = w \eta \nabla_w \mathcal{L}(w, x^i, y^i)$
- In case of large datasets, Batch GD computes redundant gradients for similar examples for each parameter update
- 3 SGD does away with redundancy and generally faster and can be used to learn online

I However, frequent updates with a high variance cause the objective function to fluctuate heavily

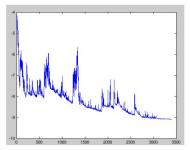


Figure credits: Wikipedia

Dr. Konda Reddy Mopuri

SGD's fluctuations enable it to jump to new and potentially better local minima

- GD's fluctuations enable it to jump to new and potentially better local minima
- ② This complicates the convergence, as it overshoots

- GD's fluctuations enable it to jump to new and potentially better local minima
- ② This complicates the convergence, as it overshoots
- 3 However, if the learning rate is slowly decreased, we can show similar convergence to Batch GD

for i in range(nb_epochs):
np.random.shuffle(
$$\mathcal{D}$$
)
for $x_i \in \mathcal{D}$:
 ∇L_w = evaluate_gradient(L, x_i , w)
 $w = w - \eta * \nabla L_w$

Takes the best of both worlds, updates the parameters for every mini-batch of n samples

 $w = w - \eta \nabla_w \mathcal{L}(w, x^{i:i+n}, y^{i:i+n})$

Takes the best of both worlds, updates the parameters for every mini-batch of n samples

 $w = w - \eta \nabla_w \mathcal{L}(w, x^{i:i+n}, y^{i:i+n})$

- Reduces the variance of the parameter updates, which can lead to more stable convergence
 - Can make use of highly optimized matrix optimizations

2

Takes the best of both worlds, updates the parameters for every mini-batch of n samples

$$w = w - \eta \nabla_w \mathcal{L}(w, x^{i:i+n}, y^{i:i+n})$$

- Reduces the variance of the parameter updates, which can lead to more stable convergence
 - Can make use of highly optimized matrix optimizations
- 3 Common mini-batch sizes vary from 32 to 1024, depending on the application

2

Takes the best of both worlds, updates the parameters for every mini-batch of n samples

$$w = w - \eta \nabla_w \mathcal{L}(w, x^{i:i+n}, y^{i:i+n})$$

- Reduces the variance of the parameter updates, which can lead to more stable convergence
 - Can make use of highly optimized matrix optimizations
- 3 Common mini-batch sizes vary from 32 to 1024, depending on the application
- This is the algorithm of choice while training DNNs (also, incorrectly referred to as SGD in general)

2

for i in range(nb_epochs): np.random.shuffle(D) for batch in get_batches(D, batch_size = 128): ∇L_w = evaluate_gradient(L, batch, w) $w = w - \eta * \nabla L_w$

Choosing a proper learning rate

Choosing a proper learning rate

• Learning rate schedules try to adjust it during the training

Choosing a proper learning rate

- Learning rate schedules try to adjust it during the training
- However, these schedules are defined in advance and hence unable to adapt to the task at hand

- Choosing a proper learning rate
 - Learning rate schedules try to adjust it during the training
 - However, these schedules are defined in advance and hence unable to adapt to the task at hand
- ② Same learning rate applies to all the parameters

- Choosing a proper learning rate
 - Learning rate schedules try to adjust it during the training
 - However, these schedules are defined in advance and hence unable to adapt to the task at hand
- ② Same learning rate applies to all the parameters
- ③ Avoiding numerous sub-optimal local minima

Different update versions in GD

To deal with the discussed challenges, researchers proposed variety of update equations for GD

- SGD with momentum
- Nesterov Accelerated Gradient
- AdaGrad
- Adadelta
- Adam
- RMSProp
- etc.

G SGD has trouble when navigating through ravines (areas where the loss surface curves sharply in one direction than other; common near local optima)

- G SGD has trouble when navigating through ravines (areas where the loss surface curves sharply in one direction than other; common near local optima)
- ② SGD progresses slowly; oscillating in the ravine

Image Momentum is a method that helps to accelerate in the relevant direction and dampens the oscillations

- Image Momentum is a method that helps to accelerate in the relevant direction and dampens the oscillations
- 2) Adds a fraction γ of the previous update vector to the current one

$$v_t = \gamma v_{t-1} + \eta \nabla_w \mathcal{L}(w)$$
$$w = w - v_t$$

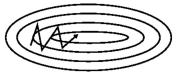
- Momentum is a method that helps to accelerate in the relevant direction and dampens the oscillations
- 2) Adds a fraction γ of the previous update vector to the current one

$$v_t = \gamma v_{t-1} + \eta \nabla_w \mathcal{L}(w)$$
$$w = w - v_t$$

 \bigcirc γ is usually set to 0.9

$$v_t = \gamma v_{t-1} + \eta \nabla_w \mathcal{L}(w)$$
$$w = w - v_t$$

- Momentum term
 - Increases the update for the components whose gradient points in the same direction
 - Decreases for the dimensions whose gradient change direction across iterations



https://ruder.io/optimizing-gradient-descent/